
A success story:
Dynaform – User-managed document forms in Lotus Notes

Jan Gundtofte-Bruun
jan@g-b.dk
2639 7565

WHAT DID I DO?

I was tasked with creating a tool for managing access 
requests to innumerable applications world-wide. 
Because application owners in diverse parts of the 
company would want to ask very different questions 
on the access request form, the tool required poten-
tially thousands of custom request forms (which are 
normally crafted by developers before deployment).

I wrote a solution that enables ordinary (unprivileged 
non-programmer) users to design and update their 
own forms using a simple and pretty UI. The “recipes”
they create get turned into real working code and 
forms by a fully automated back-end running on a 
production system.

WHY WAS IT NECESSARY?

Normally, Lotus Notes programmers create a handful 
of more or less static forms for an application, so 
managing thousands was going to be a prohibitively 
work-intensive burden in regard to initial development
as well as subsequent maintenance. To sidestep that 
obstacle, I invented, architected, and prototyped a 
radical and innovative method for on-demand form 
management.

This concept proved solid and was incorporated into 
the project.

HOW DID I DO IT?

Before starting to implement this concept, I carried out
performance tests to see whether Lotus Notes could 
even handle thousands of forms, and it turned out to 
be no problem at all.

First, I designed a form with all kinds of entry fields, 
exported this as DXL (Domino XML), and chopped it 
into little pieces. Then, I designed a user-friendly inter-
face through which application owners could compose
their forms using whatever combination of fields they 
desired. Apart from the data-entry field itself, a “field”
definition also included a label, some help text, and 
data validation rules.

The output is a “recipe” document, which is detected 
by a background task that parses the recipe and 
composes appropriate DXL for the corresponding 
form, and compiles it into a design element, ready for 
use. Recipes can be updated, in which case the old 
revision is kept and existing access requests that are 
“in the pipeline” are completed using the old revision. 
A recipe also includes parameters so that forms can be 
created in advance and be available only within select 
regions or divisions, as well as from, until, or between 
specific dates.

End users are presented with an interface to browse 
available applications based on the existing recipes 
and their parameters, and may create access request 
documents.

Documents created with such forms have a number of 
common fields (information about the requester, 
which application it's for, etc.) plus a varying number 

of custom fields. The custom fields follow an internal 
naming scheme that ensures views can be built relat-
ively easily and the request tool does not exceed the 
number-of-fields limit.

The prototype turned out to be very successful, and 
was incorporated with only minor changes into a 
working product. The product included workflow and 
approval mechanisms and so on, but that is outside 
the scope of this story.

WHAT'S SO COOL ABOUT THAT?

I was not able to find any evidence online of previous 
attempts to create a Notes application with this type of
user-driven self-modifying behaviour. To boot, I 
received overwhelmingly positive feedback on the 
form-building UI.

The points I feel most proud about are:

• It's a self-modifying application (on IBM's 
production servers, no less), that in itself is 
pretty cool!

• Pulling off dynamic compilation based on 
user-generated designs without any risk or 
skill on the part of the end users.

• Setting up a prototype and test it with a large-
scale dataset with positive results.

• The reaction from end application owners has 
been overwhelmingly positive (even though 
they are, in a way, doing our development 
work for us).


